Geochemical Modeling With PHREEQC
Outline and Objectives

• Introduction to geochemical modeling concepts and PHREEQC
• Overview of the *PHREEQC for Windows* interface
• Learn how to create PHREEQC input files
What geochemical processes determine the chemistry of natural waters?

- Aqueous speciation
- Mineral dissolution and precipitation
- Ion exchange and sorption
- (Bio-)geochemical redox reactions
- (Mixing)
Groundwater Chemical Evolution

from: Custodio, 1987
Geochemical Processes
What Information Can Be Extracted From a Water Analysis?

<table>
<thead>
<tr>
<th>Core</th>
<th>TNO numn Depth inte Depth</th>
<th>pH</th>
<th>Cl</th>
<th>SO4</th>
<th>Na</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>PO4</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>309 317-324 320</td>
<td>8.3</td>
<td>578.1</td>
<td>25.10326</td>
<td>457.5136</td>
<td>24.9271</td>
<td>55.98109</td>
<td>12.60467</td>
<td>9.68E-03</td>
<td>6.49E-01</td>
</tr>
<tr>
<td></td>
<td>280-287 284</td>
<td>7.74</td>
<td>620.3</td>
<td>25.05919</td>
<td>547.0956</td>
<td>27.2654</td>
<td>56.16894</td>
<td>12.09219</td>
<td>1.08E-02</td>
<td>5.68E-01</td>
</tr>
<tr>
<td></td>
<td>243-250 247</td>
<td>7.9</td>
<td>559.7</td>
<td>21.07458</td>
<td>460.6907</td>
<td>30.14198</td>
<td>50.34903</td>
<td>9.918007</td>
<td>9.78E-03</td>
<td>4.56E-01</td>
</tr>
<tr>
<td></td>
<td>191</td>
<td>7.79</td>
<td>639.7</td>
<td>32.48317</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>158-164 161</td>
<td>7.99</td>
<td>635.6</td>
<td>32.84626</td>
<td>573.8217</td>
<td>18.05517</td>
<td>66.1348</td>
<td>15.66471</td>
<td>1.43E-02</td>
<td>3.67E-01</td>
</tr>
<tr>
<td></td>
<td>128-134 131</td>
<td>7.87</td>
<td>621.3</td>
<td>32.25926</td>
<td>535.8483</td>
<td>16.52158</td>
<td>61.81203</td>
<td>15.15</td>
<td>1.31E-02</td>
<td>3.17E-01</td>
</tr>
<tr>
<td></td>
<td>324-330 327</td>
<td>6.93</td>
<td>505</td>
<td>19.7</td>
<td>421</td>
<td>23.2</td>
<td>41.3</td>
<td>8.6</td>
<td>0.00E+00</td>
<td>2.50E-01</td>
</tr>
<tr>
<td></td>
<td>287-293 290</td>
<td>6.92</td>
<td>514</td>
<td>21.9</td>
<td>443</td>
<td>19</td>
<td>44.4</td>
<td>10.3</td>
<td>0.00E+00</td>
<td>2.50E-01</td>
</tr>
<tr>
<td></td>
<td>250-256 253</td>
<td>6.96</td>
<td>523</td>
<td>23.8</td>
<td>448</td>
<td>15.5</td>
<td>45.8</td>
<td>10.5</td>
<td>0.00E+00</td>
<td>2.46E-01</td>
</tr>
<tr>
<td>2</td>
<td>316 198-204 201</td>
<td>7.91</td>
<td>553.7</td>
<td>22.33562</td>
<td>451.3149</td>
<td>25.03601</td>
<td>54.48607</td>
<td>9.635922</td>
<td>1.38E-02</td>
<td>5.27E-01</td>
</tr>
<tr>
<td></td>
<td>136-144 141</td>
<td>8.25</td>
<td>559.6</td>
<td>25.1473</td>
<td>471.3479</td>
<td>22.20608</td>
<td>54.13232</td>
<td>10.40915</td>
<td>1.93E-02</td>
<td>7.60E-01</td>
</tr>
<tr>
<td></td>
<td>108-114 111</td>
<td>7.91</td>
<td>505.7</td>
<td>25.36674</td>
<td>492.3951</td>
<td>18.7939</td>
<td>57.34298</td>
<td>11.78307</td>
<td>9.61E-03</td>
<td>3.47E-01</td>
</tr>
<tr>
<td></td>
<td>77-83 80</td>
<td>7.86</td>
<td>643.5</td>
<td>29.83156</td>
<td>552.0492</td>
<td>22.50488</td>
<td>62.08362</td>
<td>13.03116</td>
<td>2.11E-02</td>
<td>8.25E-01</td>
</tr>
<tr>
<td></td>
<td>47-53 50</td>
<td>8.11</td>
<td>669.3</td>
<td>30.90765</td>
<td>656.8801</td>
<td>16.2636</td>
<td>65.99998</td>
<td>11.68998</td>
<td>1.65E-02</td>
<td>4.92E-01</td>
</tr>
<tr>
<td></td>
<td>177-183 180</td>
<td>8.22</td>
<td>528</td>
<td>12.77778</td>
<td>452.1299</td>
<td>12.67142</td>
<td>46.52384</td>
<td>10.80284</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>147-153 150</td>
<td>8.23</td>
<td>512.8</td>
<td>17.36579</td>
<td>452.336</td>
<td>13.70889</td>
<td>47.91626</td>
<td>10.94134</td>
<td>1.33E-01</td>
<td>9.36E-01</td>
</tr>
<tr>
<td></td>
<td>117-123 120</td>
<td>8.23</td>
<td>561.6</td>
<td>23.82286</td>
<td>507.9618</td>
<td>18.36166</td>
<td>55.11526</td>
<td>12.47766</td>
<td>7.66E-02</td>
<td>1.33E+00</td>
</tr>
<tr>
<td></td>
<td>192-198 195</td>
<td>7.71</td>
<td>473</td>
<td>10.1</td>
<td>436</td>
<td>7.18</td>
<td>36.5</td>
<td>11</td>
<td>3.00E-02</td>
<td>1.24E-01</td>
</tr>
<tr>
<td></td>
<td>162-166 165</td>
<td>7.53</td>
<td>493</td>
<td>13.9</td>
<td>439</td>
<td>8.13</td>
<td>41.3</td>
<td>11.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>132-138 135</td>
<td>7.51</td>
<td>516</td>
<td>20.1</td>
<td>469</td>
<td>9.17</td>
<td>46.2</td>
<td>11.2</td>
<td>2.90E-02</td>
<td>1.43E-01</td>
</tr>
<tr>
<td></td>
<td>168-194 191</td>
<td>7.79</td>
<td>639.7</td>
<td>32.40317</td>
<td>620.7630</td>
<td>24.00357</td>
<td>75.05096</td>
<td>17.60305</td>
<td>1.91E-02</td>
<td>6.06E-01</td>
</tr>
<tr>
<td></td>
<td>174-168 171</td>
<td>602.2</td>
<td>24.798362</td>
<td>644.76060</td>
<td>36.772471</td>
<td>74.634646</td>
<td>14.230287</td>
<td>0.04857#</td>
<td>4.869#</td>
<td></td>
</tr>
</tbody>
</table>
How to make a sensible interpretation of water quality?
Geochemical Models - Quantitative Tools to Improve Understanding

Quantitative models force the investigator to validate or invalidate ideas by putting real numbers into an often vague hypothesis, ...

from Lichtner et al., 1996
What Is a Geochemical Model?

Input Solution Composition

- SO$_4$
- Ca
- Mg
- Na
- Cl
- Fe
- HCO$_3$

Speciation calculation

Saturation Indices

Distribution of Species

Inverse modeling (mass balance)

Reaction modeling (mass transfer)

Reactive transport modeling
Concentration Units in PHREEQC

- Internally, PHREEQC uses moles and moles/kg_{water}
- Can define concentrations in mole/kg, mole/L, ppm, mg/L in input file; program converts to moles/kg_{w}
- mg/L can lead to confusion (NO_{3} vs NO_{3}-N)
- all reactions are defined in moles
- PHT3D requires use of moles exclusively
Law of Mass Action

\[aA + bB \leftrightarrow cC + dD \]

\[K = \frac{[C]^c[D]^d}{[A]^a[B]^b} \]

\[CaSO_4 \cdot 2H_2O \leftrightarrow Ca^{2+} + SO_4^{2-} + 2H_2O \]

(gypsum)

\[K = \frac{[Ca^{2+}][SO_4^{2-}][H_2O]^2}{[CaSO_4 \cdot 2H_2O]} = 10^{-4.60} \]
Concentration and Activity

• Activity \neq concentration
• Why?
 – Ions interact
 – Ion-solvent (water) interactions - electrostatic shielding
 – Ion-ion interactions - aqueous complexes and ion pairs
Electrostatic shielding

\[[Ca^{2+}] = \gamma_{Ca^{2+}} \cdot m_{Ca^{2+}} \]

Debye – Huckel:

\[
\log \gamma_i = -0.5085z_i^2 \left(\frac{\sqrt{l}}{1 + \sqrt{l}} - 0.3l \right)
\]

\[l = \frac{1}{2} \sum m_i \cdot z_i^2 \]

Pretty straightforward, can be done by hand...
Activity Coefficients

- Effect of a single ion in solution cannot be measured directly (charge balance)
- Mean Ion Activity Coefficient – determined for a salt (e.g. KCl, MgSO₄):
 \[\gamma_{\pm \text{KCl}} = \sqrt{\gamma_{\text{K}^+} \gamma_{\text{Cl}^-}} \]
 \[K_{sp} = \gamma_{\pm \text{KCl}}^2 m_{\text{K}^+} m_{\text{Cl}^-} \]
- MacInnes Convention: \[\gamma_{\pm \text{KCl}} = \gamma_{\text{K}^+} = \gamma_{\text{Cl}^-} \]
- Measure other salts in KCl electrolyte and substitute \[\gamma_{\pm \text{KCl}} \] in for one ion to measure the other ion w.r.t. \[\gamma_{\pm \text{KCl}} \] and \[\gamma_{\pm \text{salt}} \]
Debye-Hückel

\[\log \gamma_i = \frac{-Az_i^2 \sqrt{l}}{1 + Ba_i \sqrt{l}} \]

- \(z_i \) is charge of ion
- \(a_i \) is effective diameter of ion (in angstroms)
- A and B are “constants”: A=0.5085, B=0.3281 for water at 25° C.

- Assumes ions interact coulombically, ion size does not vary with ionic strength, and ions of same sign do not interact
- Accurate up to \(I = 0.1 \) M (most fresh waters)
Higher Ionic Strengths

• Activity coefficients decrease to minimal values around 1 - 10 M, then increase again
 – the fraction of water molecules surrounding ions in hydration spheres becomes significant
 – Activity of water decreases \rightarrow in a 5 M NaCl solution, $\sim1/2$ of the H$_2$O is complexed, decreasing the activity to 0.8
 – Ion pairing also increases, further increasing the activity effects (e.g. NaCl0)
Davies Equation

\[
\log \gamma_i = -Az_i^2 \left(\frac{\sqrt{l}}{1 + \sqrt{l}} - 0.3l \right)
\]

- No ion size parameter – only really accurate for monovalent ions \((z_i=\pm 1)\)
- Often used for seawater (working range up to 0.7 M)
Extended Debye-Hückel (WATEQ)

\[\log \gamma_i = -Az^2 \left(\frac{-Az_i^2 \sqrt{I}}{1 + Ba_i \sqrt{I}} - b_i I \right) \]

- Adds a correction term to account for increase of \(\gamma_i \) at higher ionic strength.
Pitzer Activity Coefficients

- Accurate for high ionic strength (>1 M)

\[
\ln \gamma_M = z_M^2 F + \sum_{a} m_a (2B_{Ma} + ZC_{Ma}) + \sum_{c} m_c (\Phi_{Mc} + \sum_{a} M_a \psi_{Mca}) + \\
\sum_{a < a'} m_a m_{a'} \psi_{aa'} + |z_m| \sum_{c} \sum_{a} m_c m_a C_{ca}
\]

- \(m_a\) is concentration of anion
- \(m_c\) is concentration of cation
- \(C, B, \Phi, \Psi\) are ion-specific parameters
- \(f^\gamma\) is a function of \(l\), molalities of cations and anions
Specific Ion Interaction Theory (SIT) Activity Coefficients

- Ion and electrolyte-specific approach for activity coefficients
- Limited data, assumes no interaction with neutral species

\[
\ln \gamma_i = Az_i^2 \frac{\sqrt{l}}{1 + B\sqrt{l}} + \sum_k \varepsilon_{ik} m_k
\]

- \(\varepsilon_{ik} \): interaction parameter
- \(m_k \): concentration of ion \(k \)
- \(A = 0.51, B = 1.5 \) at 25°C
Setchenow Equation

\[\log \gamma_i = K_i I \]

- For neutral (uncharged) species such as dissolved gases, weak acids, and organic species
- \(K_i \) is generally <0.2
- \(\gamma_i > 1 \), meaning that if a reaction is at equilibrium, \(m_i \) must decrease with increasing \(I \) (“salting out” effect)
Aqueous Complexes and Ion Pairs

\[m_{Ca} = m_{Ca^{2+}} + m_{CaOH^+} + m_{CaCO_3^0} + m_{CaSO_4^0} \]
\[+ m_{CaPO_4^-} + m_{CaF^+} + \ldots \]

Cannot be calculated by hand...
Enter aqueous geochemical models!
How Do Yo Do It?

- Solve simultaneous equations for:
 - mass action
 - mass balance
 - charge balance
- Numerically solved by iteration (until convergence is reached)
Aqueous Models

Ion association (D-H, Davies)

- **Pros**
 - Data available for most elements (Al, Si)
 - Redox species
 - Relatively easy to add new elements

- **Cons**
 - Ionic strength < 1
 - Best suited for Na-Cl medium
 - Inconsistent thermodynamic data
 - Temperature dependence
Aqueous Models

Pitzer

• Pros
 – Accurate to high ionic strength
 – Thermodynamic consistency for mixtures of electrolytes

• Cons
 – Limited number of elements
 – Very limited redox
 – Difficult to add new elements
 – Limited data on temperature dependence
Aqueous Models

SIT

• Pros
 – Better option than ion association for higher ionic strength
 – Fewer parameters than Pitzer
 – Redox
 – Actinides

• Cons
 – Temperature dependence
 – Consistency?
Saturation states

Solubility Product: \(K_{\text{gypsum}} = [Ca^{2+}][SO_4^{2-}] \)

Ion Activity Product: \(IAP_{\text{gypsum}} = [Ca^{2+}][SO_4^{2-}] \)

At equilibrium: \(K_{\text{gypsum}} = IAP_{\text{gypsum}} \)

\[
SI_{\text{gypsum}} = \log \left(\frac{IAP_{\text{gypsum}}}{K_{\text{gypsum}}} \right) = 0
\]

Supersaturated: \(SI_{\text{gypsum}} > 0 \)

Undersaturated: \(SI_{\text{gypsum}} < 0 \)
Seawater Speciation

A CHEMICAL MODEL FOR SEA WATER AT 25°C AND ONE ATMOSPHERE TOTAL PRESSURE*

R. M. GARRELS and M. E. THOMPSON

Department of Geological Sciences, Harvard University, Cambridge, Massachusetts

ABSTRACT. Dissociation constants involving Ca++, Mg++, Na+, K+, SO₄⁻, HCO₃⁻, and CO₃⁻ ions, and individual ion activity coefficients have been used to calculate the distribution of dissolved species in sea water at 25°C and one atmosphere total pressure. The distribution obtained for sea water of chlorinity 19‰ and pH 8.1 are:

<table>
<thead>
<tr>
<th>Ion</th>
<th>Molality (Total)</th>
<th>% Free Ion</th>
<th>% Me-SO₄⁻ pair</th>
<th>% Me-HCO₃⁻ pair</th>
<th>% Me-CO₃⁻ pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca++</td>
<td>0.0104</td>
<td>91</td>
<td>8</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Mg++</td>
<td>0.0340</td>
<td>87</td>
<td>11</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Na⁺</td>
<td>0.4752</td>
<td>99</td>
<td>1.2</td>
<td>0.01</td>
<td>---</td>
</tr>
<tr>
<td>K⁺</td>
<td>0.0100</td>
<td>99</td>
<td>1</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ion</th>
<th>Molality (Total)</th>
<th>% Free Ion</th>
<th>% Ca-anion pair</th>
<th>% Mg-anion pair</th>
<th>% Na-anion pair</th>
<th>% K-anion pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄⁻</td>
<td>0.0284</td>
<td>54</td>
<td>3</td>
<td>21.5</td>
<td>21</td>
<td>0.5</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>0.00238</td>
<td>69</td>
<td>4</td>
<td>19</td>
<td>8</td>
<td>---</td>
</tr>
<tr>
<td>CO₃⁻</td>
<td>0.000269</td>
<td>9</td>
<td>7</td>
<td>67</td>
<td>17</td>
<td>---</td>
</tr>
</tbody>
</table>

The activities calculated for free ions are $a_{\text{Ca}^{++}} = 0.00264$, $a_{\text{Mg}^{++}} = 0.0169$, $a_{\text{Na}^+} = 0.356$, $a_{\text{K}^+} = 0.0063$, $a_{\text{CO}_3^{--}} = 4.7(10^{-4})$, $a_{\text{HCO}_3} = 9.75 (10^{+4})$, $a_{\text{SO}_4^{--}} = 1.79(10^{+2})$.
Seawater Speciation

Result $SI_{\text{calcite}} = 0.4$
PHREEQC: What Can It Do?

- Developed by David Parkhurst and Tony Apello
- Calculate the equilibrium composition of a system (speciation)
- Calculate the change in composition in response to reactions
 - Mineral/gas equilibria
 - Ion exchange
 - Surface complexation
 - Kinetic reactions (time-dependent)
- Calculate the change in composition in response to 1-D transport (and reactions)
Thermodynamic Databases in PHREEQC

- phreeqc.dat
- wateq4f.dat
- llnl.dat
- minteq.dat
- pitzer.dat
- sit.dat
- iso.dat
PHREEQC Thermodynamic Databases

• SOLUTION_MASTER_SPECIES—Redox states and gram formula mass
• SOLUTIONSPECIES—Reaction and log K
• PHASES—Reaction and log K
Optional:
• EXCHANGE_MASTER_SPECIES—Names
• EXCHANGESPECIES—Reaction and log K
• SURFACE_MASTER_SPECIES—Names
• SRFACE_SPECIES—Reaction and log K
Thermodynamic Databases

\[\Sigma(\text{As}) = 10^{-7} \]

wateq.dat

- \(\text{H}_3\text{AsO}_4^- \)
- \(\text{H}_2\text{AsO}_4^- \)
- \(\text{H}_3\text{AsO}_3^- \)
- \(\text{AsO}_4^{3-} \)

llnl.dat

- \(\text{H}_3\text{AsO}_4(\text{aq}) \)
- \(\text{H}_2\text{AsO}_4^- \)
- \(\text{HAsO}_4^{2-} \)
- \(\text{AsO}_4^{3-} \)

Eh (volts) vs pH at 25°C
Thermodynamic Databases

\[\Sigma(\text{As}) = 10^{-7} \]
\[\Sigma(\text{S}) = 10^{-3} \]
Where Does the Thermodynamic Data Come From?

As$_2$S$_3$ Solubility

![Graph showing comparison of predicted and measured arsenic concentrations in equilibrium with As$_2$S$_3$.](image)

Figure 1. Comparison of predicted and measured arsenic concentrations in equilibrium with As$_2$S$_3$.

Table 1. Optimized equilibrium model for As$_2$S$_3$ solubility in aqueous sulfide solutions at 25°C.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>log K (s.e.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As$_2$S(s) + 6 H$_2$O = 2 H$_2$AsO$_5^-$ + 3 HS$^-$ + 5 H$^+$</td>
<td>-64.66 (0.12)</td>
</tr>
<tr>
<td>Webster (synthetic orpiment)</td>
<td>-64.66 (0.12)</td>
</tr>
<tr>
<td>Mironova (natural orpiment)</td>
<td>-64.72 (0.25)</td>
</tr>
<tr>
<td>Neuberger (natural orpiment)</td>
<td>-64.70 (0.44)</td>
</tr>
<tr>
<td>Eary (amorphous As$_2$S$_3$)</td>
<td>-62.51 (0.40)</td>
</tr>
<tr>
<td>H$_2$AsO$_4^-$ = H$_2$AsO$_5^-$ + H$^+$</td>
<td>-9.17*</td>
</tr>
<tr>
<td>H$_2$AsO$_4^-$ = HAAsO$_3^{2-}$ + H$^+$</td>
<td>-14.06*</td>
</tr>
<tr>
<td>H$_2$AsO$_4^-$ = AsO$_3^{3-}$ + 2 H$^+$</td>
<td>-29.05*</td>
</tr>
<tr>
<td>H$_2$AsS$_4^-$ + 3 H$_2$S = H$_2$AsS$_3^-$ + 3 H$_2$O</td>
<td>7.75 (0.44)</td>
</tr>
<tr>
<td>H$_2$AsS$_4^-$ = H$_2$AsS$_3^-$ + H$^+$</td>
<td>-2.14 (0.46)</td>
</tr>
<tr>
<td>H$_2$AsS$_4^-$ = HAAsS$_3^{2-}$ + H$^+$</td>
<td>-7.19 (0.39)</td>
</tr>
<tr>
<td>H$_2$AsO$_4$ + H$_2$S = H$_2$AsSO$_3$ + H$_2$O</td>
<td>4.68 (0.18)</td>
</tr>
<tr>
<td>H$_2$AsSO$_4$ = H$_2$AsSO$_3^-$ + H$^+$</td>
<td>-5.26 (0.26)</td>
</tr>
</tbody>
</table>

PhreePlot:

PHREEQC with fitting

(www.phreeplot.org)
Sorption Reaction Databases

- Measured sorption edges, isotherms for Cd and Pb for three different soils
- Used PEST to fit universal set of log K’s for ion exchange on clays, sorption of Fe-oxides
- Tested transferability on isotherm data for fourth soil

Serrano et al (2009) GCA
PHREEQC for Windows (PfW)

• Graphic interface developed by Vincent Post
• Based on PHREEQC version 2.xx
• Includes:
 – input editor
 – output editor
 – database editor
 – basic spreadsheet
 – graphical output (USER_GRAPH)
TITLE Example 2.--Temperature dependence of solubility of gypsum and anhydrite
5 SOLUTION 1 Pure water
4 pH 7.0
5 temp 25.0
6 EQUILIBRIUM PHASES 1
7 Gypsum 0.0 1.0
8 Anhydrite 0.0 1.0
9 REACTION TEMPERATURE 1
10 25.0 75.0 in 51 steps
11 SELECTED_OUTPUT
12 -file ex2.sel
13 -si anhydrite gypsum
14 USER_GRAPH
15 -headings Temperature SI(Gypsum) SI(Anhydrite)
16 -chart_title "Example 2"
17 axis_scale x_axis 25 75
18 axis_scale y_axis -0.3 0.1
19 axis_titles "TEMPERATURE IN DEGREES CELSIUS" "SATURATION INDEX"
20 -initial_solutions false
21 -start
22 10 graph_x TC
23 20 graph_y SI("Gypsum") SI("Anhydrite")
24 -end
25 END
PHREEQC Keywords

- Start
 - COPY
 - DATABASE
 - END
 - SAVE
 - SOLUTION
 - SOLUTION_SPREAD
 - TITLE
 - USE

- Chemical reaction
 - EQUILIBRIUM_PHASES
 - EXCHANGE
 - GAS_PHASE
 - INCREMENTAL_REACTIONS
 - INVERSE_MODELING
 - REACTION
 - HEAT_TREAT
 - HTR
 - SURFACE

- Physical action
 - ADVECTION
 - MIX
 - TRANSPORT

- Output
 - PRINT
 - SELECTED_OUTPUT
 - USER_GRAPH
 - USER_PRINT
 - USER_PUNCH

- PHREEQC BASIC statements
 - GENERAL BASIC statements
SOLUTION 1 Seawater
 temp 25
 pH 7
 pe 4
 redox pe
 units ppm
 density 1
 Ca 412.3
 Mg 1291.8
 Na 10768
 K 399.1
 Fe 0.002
 Alkalinity 141.682 as HCO3
 Cl 19353
 S(6) 2712
 -water 1 # kg
<table>
<thead>
<tr>
<th>pH</th>
<th>Cl</th>
<th>S(6)</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>Alkalinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.23</td>
<td>5050</td>
<td>498</td>
<td>149</td>
<td>290</td>
<td>2440</td>
<td>98.2</td>
<td>301 mg/l as CaCO3</td>
</tr>
<tr>
<td>6.04</td>
<td>5600</td>
<td>516</td>
<td>154</td>
<td>296</td>
<td>2740</td>
<td>105</td>
<td>214</td>
</tr>
<tr>
<td>6.17</td>
<td>4880</td>
<td>397</td>
<td>154</td>
<td>278</td>
<td>2550</td>
<td>90.9</td>
<td>299</td>
</tr>
<tr>
<td>5.91</td>
<td>8880</td>
<td>578</td>
<td>157</td>
<td>299</td>
<td>2610</td>
<td>91.2</td>
<td>138</td>
</tr>
<tr>
<td>6.00</td>
<td>7660</td>
<td>800</td>
<td>159</td>
<td>328</td>
<td>2700</td>
<td>91.5</td>
<td>133</td>
</tr>
</tbody>
</table>
SOLUTION or SOLUTION_SPREAD

- Distribution of species
- Saturation indices
- Initial conditions for reaction path calculations
- Initial/final compositions for inverse modeling
- Initial and boundary conditions for reactive-transport modeling
MIX

MIX
1 0.75
2 0.25

EQUILIBRIUM_PHASES

EQUILIBRIUM_PHASES 1
Calcite 0 0
Dolomite 0 1.5
CO2(g) -2.0
EXCHANGE

EXCHANGE 1
 -equil with solution 1
X 1.0

SURFACE

SURFACE 1
 -equil solution 1
assume 1/10 of iron is HFO
Hfo_w 0.07 600. 30.
REACTION

CH2O 1
10 mmol in 10 steps

KINETICS

KINETICS 1
K-feldspar
-m0 2.16 # 10% K-fsp, 0.1 mm cubes
-m 1.94
-parms 1.36e4 0.1
RATES

K-feldspar

-start

10 dif_temp = 1/TK - 1/298
20 pk_H = 12.5 + 3134 * dif_temp
30 pk_w = 15.3 + 1838 * dif_temp
40 pk_OH = 14.2 + 3134 * dif_temp
50 pk_CO2 = 14.6 + 1677 * dif_temp
60 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
70 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)")^0.6
80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time
90 if SR("K-feldspar") > 1 then moles = moles * 0.1
100 save moles
-end
SAVE

SOLUTION 1
REACTION 1

NaCl 1
1.0 mol
SAVE solution 10
END

USE

USE solution 10
EQUILIBRIUM_PHASES 21
 CO2(g) -3.5
SAVE solution 11
SAVE equilibrium_phases 11
END
SELECTED_OUTPUT

SELECTED_OUTPUT
-file r11.csv
-reset false
-reaction
-totals O(0) C(4) C(-4) Fe(3) Fe(2) S(6) S(-2)
-equilibrium_phases mackinawite

USER_PUNCH

USER_PUNCH
-head pH Ca_mg/L Mg_mg/L
-start
10 PUNCH -la("H+")
20 PUNCH TOT("Ca")*40.1*1e3
30 PUNCH TOT("Mg")*24.3*1e3
-end
USER_GRAPH

-heading time Si
-axis_titles YEARS CONCENTRATION
-headings Years
-axis_scale y_axis 0 1.e-4
-axis_scale x_axis 0 10
-start
10 graph_x total_time/3.1536e7 # time in years on x-axis
20 graph_y tot("Si") # parameter on y-axis
-end
Additional Keyword Data Blocks

SOLUTION_MASTER_SPECIES
SOLUTION_SPECIES

EXCHANGE_MASTER_SPECIES
EXCHANGE_SPECIES

SURFACE_MASTER_SPECIES
SURFACE_SPECIES

PHASES
INVERSE_MODELING

INVERSE_MODELING 1
-solutions 10 5
-uncertainty 0.1
-phases
 pyrite
 Fe(OH)$_3$(a)
 H$_2$O(g)
 Calcite
 OC
 CaX2
 KX
 NaX
-balances
 Alkalinity 0.05 0.05
 C 0.05 0.05
 Ca 0.05 0.05
 Cl 0.05 0.05
 Fe 0.05 0.05
 Mg 0.05 0.05
 Na 0.05 0.05
 S 0.05 0.05
PHREEQC Transport Calculations

Advection

1 2 3 4 5 6 ... n

Dispersion/
Diffusion

1 2 3 4 5 6 ... n

Reaction

1 2 3 4 5 6 ... n